Epipolar Geometry from Profiles under Circular Motion
نویسندگان
چکیده
ÐThis paper addresses the problem of motion estimation from profiles (also known as apparent contours) of an object rotating on a turntable in front of a single camera. Its main contribution is the development of a practical and accurate technique for solving this problem from profiles alone, which is precise enough to allow for the reconstruction of the shape of the object. No correspondences between points or lines are necessary, although the method proposed can be used equally when these features are available without any further adaptation. Symmetry properties of the surface of revolution swept out by the rotating object are exploited to obtain the image of the rotation axis and the homography relating epipolar lines in two views in a robust and elegant way. These, together with geometric constraints for images of rotating objects, are then used to obtain first the image of the horizon, which is the projection of the plane that contains the camera centers, and then the epipoles, thus fully determining the epipolar geometry of the image sequence. The estimation of the epipolar geometry by this sequential approach (image of rotation axisÐhomographyÐimage of the horizonÐepipoles) avoids many of the problems usually found in other algorithms for motion recovery from profiles. In particular, the search for the epipoles, by far the most critical step, is carried out as a simple one-dimensional optimization problem. The initialization of the parameters is trivial and completely automatic for all stages of the algorithm. After the estimation of the epipolar geometry, the Euclidean motion is recovered using the fixed intrinsic parameters of the camera obtained either from a calibration grid or from self-calibration techniques. Finally, the spinning object is reconstructed from its profiles using the motion estimated in the previous stage. Results from real data are presented, demonstrating the efficiency and usefulness of the proposed methods. Index TermsÐStructure and motion, epipolar geometry, profiles, apparent contours, circular motion.
منابع مشابه
Shape from Profiles
Profiles of a sculpture provide rich information about its geometry, and can be used for model reconstruction under known camera motion. By exploiting correspondences induced by epipolar tangents on the profiles, a successful solution to motion estimation has been developed for the case of circular motion. Arbitrary general views can then be incorporated to refine the model built from circular ...
متن کاملReconstruction of sculpture from uncalibrated image profiles
Profiles of a sculpture provide rich information about its geometry, and can be used for model reconstruction under known camera motion. By exploiting correspondences induced by epipolar tangents on the profiles, a successful solution to motion estimation has been developed for the case of circular motion. Arbitrary general views can then be incorporated to refine the model built from circular ...
متن کاملRecovery of Circular Motion from Profiles of Surfaces
This paper addresses the problem of motion recovery from image profiles, in the important case of turntable sequences. No correspondences between points or lines are used. Symmetry properties of surfaces of revolution are exploited to obtain, in a robust and simple way, the image of the rotation axis of the sequence and the homography relating epipolar lines. These, together with geometric cons...
متن کاملCamera Pose Estimation and Reconstruction from Image Profiles under Circular Motion
This paper addresses the problem of motion estimation and reconstruction of 3D models from profiles of an object rotating on a turntable, obtained from a single camera. Its main contribution is the development of a practical and accurate technique for solving this problem from profiles alone, which is, for the first time, precise enough to allow the reconstruction of the object. No corresponden...
متن کاملEstimation of Epipolar Geometry from Apparent Contours: Affine and Circular Motion Cases
This paper addresses the problem of estimating the epipolar geometry from apparent contours in two special cases: under weak perspective and for circular motion. An appropriate parametrization of the fundamental matrix is introduced for both cases, as well as suitable cost functions for the estimation of the epipoles. The algorithm used in the affine approximation proved to be robust and accura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 23 شماره
صفحات -
تاریخ انتشار 2001